Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1257586, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318163

RESUMO

During the recent avian influenza epizootics that occurred in France in 2020/21 and 2021/22, the virus was so contagiousness that it was impossible to control its spread between farms. The preventive slaughter of millions of birds consequently was the only solution available. In an effort to better understand the spread of avian influenza viruses (AIVs) in a rapid and innovative manner, we established an amplicon-based MinION sequencing workflow for the rapid genetic typing of circulating AIV strains. An amplicon-based MinION sequencing workflow based on a set of PCR primers targeting primarily the hemagglutinin gene but also the entire influenza virus genome was developed. Thirty field samples from H5 HPAIV outbreaks in France, including environmental samples, were sequenced using the MinION MK1C. A real-time alignment of the sequences with MinKNOW software allowed the sequencing run to be stopped as soon as enough data were generated. The consensus sequences were then generated and a phylogenetic analysis was conducted to establish links between the outbreaks. The whole sequence of the hemagglutinin gene was obtained for the 30 clinical samples of H5Nx HPAIV belonging to clade 2.3.4.4b. The consensus sequences comparison and the phylogenetic analysis demonstrated links between some outbreaks. While several studies have shown the advantages of MinION for avian influenza virus sequencing, this workflow has been applied exclusively to clinical field samples, without any amplification step on cell cultures or embryonated eggs. As this type of testing pipeline requires only a short amount of time to link outbreaks or demonstrate a new introduction, it could be applied to the real-time management of viral epizootics.


Assuntos
Vírus da Influenza A , Influenza Aviária , Sequenciamento por Nanoporos , Animais , Influenza Aviária/epidemiologia , Filogenia , Hemaglutininas , Fluxo de Trabalho , Surtos de Doenças , Vírus da Influenza A/genética
2.
Avian Pathol ; 53(2): 93-100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37885409

RESUMO

Highly pathogenic avian influenza viruses (HPAIV) are a major threat to the global poultry industry and public health due to their zoonotic potential. Since 2016, Europe and France have faced major epizootics caused by clade 2.3.4.4b H5 HPAIV. To reduce sample-to-result times, point-of-care testing is urgently needed to help prevent further outbreaks and the propagation of the virus. This study presents the design of a novel real-time colourimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of clade 2.3.4.4b H5 HPAIV. A clinical validation of this RT-LAMP assay was performed on 198 pools of clinical swabs sampled in 52 poultry flocks during the H5 HPAI 2020-2022 epizootics in France. This RT-LAMP assay allowed the specific detection of HPAIV H5Nx clade 2.3.4.4b within 30 min with a sensitivity of 86.11%. This rapid, easy-to-perform, inexpensive, molecular detection assay could be included in the HPAIV surveillance toolbox.


Assuntos
Vírus da Influenza A , Influenza Aviária , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Animais , Transcrição Reversa , Influenza Aviária/diagnóstico , Colorimetria/veterinária , Sensibilidade e Especificidade , Vírus da Influenza A/genética , Aves Domésticas
3.
Microbiol Spectr ; 11(6): e0305523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37982626

RESUMO

IMPORTANCE: With the circulation of high pathogenicity avian influenza viruses having intensified considerably in recent years, the European Union is considering the vaccination of farmed birds. A prerequisite for this vaccination is the implementation of drastic surveillance protocols. Environmental sampling is a relevant alternative to animal sampling. However, environmental samples often contain inhibitory compounds in large enough quantities to inhibit RT-qPCR reactions. As bovine serum albumin is a molecule used in many fields to overcome this inhibitory effect, we tested its use on dust samples from poultry farms in areas heavily affected by HPAIV epizootics. Our results show that its use significantly increases the sensitivity of the method.


Assuntos
Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Soroalbumina Bovina , Poeira , Virulência , Vírus da Influenza A/genética , Aves Domésticas , Filogenia
4.
Emerg Microbes Infect ; 12(2): 2272644, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847060

RESUMO

Immature feathers are known replication sites for high pathogenicity avian influenza viruses (HPAIVs) in poultry. However, it is unclear whether feathers play an active role in viral transmission. This study aims to investigate the contribution of the feather epithelium to the dissemination of clade 2.3.4.4b goose/Guangdong/1996 lineage H5 HPAIVs in the environment, based on natural and experimental infections of domestic mule and Muscovy ducks. During the 2016-2022 outbreaks, H5 HPAIVs exhibited persistent and marked feather epitheliotropism in naturally infected commercial ducks. Infection of the feather epithelium resulted in epithelial necrosis and disruption, as well as the production and environmental shedding of infectious virions. Viral and feather antigens colocalized in dust samples obtained from poultry barns housing naturally infected birds. In summary, the feather epithelium contributes to viral replication, and it is a likely source of environmental infectious material. This underestimated excretion route could greatly impact the ecology of HPAIVs, facilitating airborne and preening-related infections within a flock, and promoting prolonged viral infectivity and long-distance viral transmission between poultry farms.


Assuntos
Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Patos , Plumas , Virulência , Aves Domésticas , Epitélio
5.
Emerg Infect Dis ; 28(7): 1446-1450, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35642480

RESUMO

Avian influenza A(H5N8) virus has caused major epizootics in Europe since 2016. We conducted virologic analysis of aerosol and dust collected on poultry farms in France during 2020-2021. Our results suggest dust contributes to viral dispersal, even early in an outbreak, and could be a valuable surveillance tool.


Assuntos
Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Influenza Humana , Doenças das Aves Domésticas , Animais , Animais Selvagens , Aves , Surtos de Doenças/veterinária , Poeira , Fazendas , França/epidemiologia , Humanos , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Filogenia , Aves Domésticas , Doenças das Aves Domésticas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...